Genotypic diversity of clinical Actinomyces species: phenotype, source, and disease correlation among genospecies

J Clin Microbiol. 2002 Sep;40(9):3442-8. doi: 10.1128/JCM.40.9.3442-3448.2002.

Abstract

We determined the frequency distribution of Actinomyces spp. recovered in a routine clinical laboratory and investigated the clinical significance of accurate identification to the species level. We identified 92 clinical strains of Actinomyces, including 13 strains in the related Arcanobacterium-Actinobaculum taxon, by 16S rRNA gene sequence analysis and recorded their biotypes, sources, and disease associations. The clinical isolates clustered into 21 genogroups. Twelve genogroups (74 strains) correlated with a known species, and nine genogroups (17 strains) did not. The individual species had source and disease correlates. Actinomyces turicensis was the most frequently isolated species and was associated with genitourinary tract specimens, often with other organisms and rarely with inflammatory cells. Actinomyces radingae was most often associated with serious, chronic soft tissue abscesses of the breast, chest, and back. Actinomyces europaeus was associated with skin abscesses of the neck and genital areas. Actinomyces lingnae, Actinomyces gravenitzii, Actinomyces odontolyticus, and Actinomyces meyeri were isolated from respiratory specimens, while A. odontolyticus-like strains were isolated from diverse sources. Several of the species were commonly coisolated with a particular bacterium: Actinomyces israelii was the only Actinomyces spp. coisolated with Actinobacillus (Haemophilus) actinomycetemcomitans; Actinomyces meyeri was coisolated with Peptostreptococcus micros and was the only species other than A. israelii associated with sulfur granules in histological specimens. Most genogroups had consistent biotypes (as determined with the RapID ANA II system); however, strains were misidentified, and many codes were not in the database. One biotype was common to several genogroups, with all of these isolates being identified as A. meyeri. Despite the recent description of new Actinomyces spp., 19% of the isolates recovered in our routine laboratory belonged to novel genospecies. One novel group with three strains, Actinomyces houstonensis sp. nov., was phenotypically similar to A. meyeri and A. turicensis but was genotypically closest to Actinomyces neuii. A. houstonensis sp. nov. was associated with abscesses. Our data documented consistent site and disease associations for 21 genogroups of Actinomyces spp. that provide greater insights into appropriate treatments. However, we also demonstrated a complexity within the Actinomyces genus that compromises the biochemical identification of Actinomyces that can be performed in most clinical laboratories. It is our hope that this large group of well-defined strains will be used to find a simple and accurate biochemical test for differentiation of the species in routine laboratories.

MeSH terms

  • Actinomyces / classification*
  • Actinomyces / genetics*
  • Actinomyces / metabolism
  • Actinomyces / pathogenicity
  • Actinomycosis / microbiology*
  • Actinomycosis / physiopathology*
  • Bacterial Typing Techniques
  • DNA, Ribosomal / analysis
  • Genetic Variation*
  • Genotype
  • Humans
  • Molecular Sequence Data
  • Phenotype
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • DNA, Ribosomal
  • RNA, Ribosomal, 16S

Associated data

  • GENBANK/AF457638