Cryptococcal meningitis is the leading cause of adult meningitis in sub-Saharan Africa, and contributes up to 20% of AIDS-related mortality in low-income and middle-income countries every year. Antifungal treatment for cryptococcal meningitis relies on three old, off-patent antifungal drugs: amphotericin B deoxycholate, flucytosine, and fluconazole. Widely accepted treatment guidelines recommend amphotericin B and flucytosine as first-line induction treatment for cryptococcal meningitis. However, flucytosine is unavailable in Africa and most of Asia, and safe amphotericin B administration requires patient hospitalisation and careful laboratory monitoring to identify and treat common side-effects. Therefore, fluconazole monotherapy is widely used in low-income and middle-income countries for induction therapy, but treatment is associated with significantly increased rates of mortality. We review the antifungal drugs used to treat cryptococcal meningitis with respect to clinical effectiveness and access issues specific to low-income and middle-income countries. Each drug poses unique access challenges: amphotericin B through cost, toxic effects, and insufficiently coordinated distribution; flucytosine through cost and scarcity of registration; and fluconazole through challenges in maintenance of local stocks—eg, sustainability of donations or insufficient generic supplies. We advocate ten steps that need to be taken to improve access to safe and effective antifungal therapy for cryptococcal meningitis.

Introduction

The right to health is firmly established in international human rights law, and encompasses the right to adequate access to health care and essential medicines. Unfortunately, people in low-income and middle-income countries continue to face large barriers to the access of essential medicines, often with devastating consequences to individuals and public health. Essential medicines are the second largest family expenditure after food for the 90% of the population in the developing world who have to purchase medicines privately. Barriers to access include drug expense, paucity of research and development on diseases predominantly affecting low-income and middle-income countries, insufficient competition from generic manufacturers, inadequate drug procurement and supply chains, and increasingly constrained global health funding.

As a common opportunistic infection in patients with advanced HIV infection, cryptococcal meningitis is the leading cause of meningitis in adults living in sub-Saharan Africa, and contributes to up to 20% of AIDS-related deaths every year in low-income and middle-income countries. Although increased access to antiretroviral therapy has resulted in a substantial reduction in incidence of cryptococcal meningitis in high-income countries, the infection is likely to remain a major cause of HIV-related mortality in the foreseeable future in low-income and middle-income countries, where antiretroviral therapy coverage is insufficient and initiated at an advanced stage of HIV. In addition to delays in the diagnosis and treatment of cryptococcal meningitis, poor access to essential antifungal medicines is a major contributor to this unacceptably high mortality. Although fluconazole monotherapy is associated with increased rates of mortality, inadequate access to alternative treatments means it is widely used in the treatment of cryptococcal meningitis. In this Personal View, we highlight the main obstacles to access of essential antifungal drugs for the treatment of cryptococcal meningitis in patients with HIV in low-income and middle-income countries. We review the three main antifungal drugs for cryptococcal meningitis—amphotericin B, flucytosine, and fluconazole—with respect to clinical effectiveness and access considerations specific to low-income and middle-income countries, and suggest steps to improve access to safe and effective antifungal treatment for cryptococcal meningitis.

Treatment of HIV-associated cryptococcal meningitis

Both the 2010 Infectious Diseases Society of America (IDSA) and 2011 WHO rapid advice guidelines recommend amphotericin B and flucytosine as first-line induction treatment for patients with cryptococcal meningitis, with alternative regimens tailored to individual clinical settings (table I). For settings in which flucytosine is unavailable, second-line induction treatment consists of amphotericin B and high-dose (800–1200 mg per day) fluconazole. Where amphotericin B is unavailable or cannot be safely given and monitored, high-dose fluconazole and flucytosine is recommended. The initial 2 week induction treatment is followed by consolidation and maintenance phases of treatment with fluconazole.

Amphotericin B

Amphotericin B was introduced in the 1950s to treat systemic mycoses. The drug has a broad antifungal range and only few reports of resistance have been documented. Additionally, amphotericin B is used to treat visceral leishmaniasis. Substantial and common side-effects of conventional amphotericin B formulations are anaemia, hypokalaemia, hypomagnesaemia, and nephrotoxicity. These effects are reversible upon...
Amphotericin B accessible, facilities for management of toxic effects* available; flucytosine accessible

Amphotericin B accessible; flucytosine not accessible

Amphotericin B accessible, facilities for management of toxic effects* restricted; flucytosine not accessible

Amphotericin B not accessible; flucytosine accessible

Amphotericin B not accessible, facilities for management of toxic effects* not available; flucytosine not accessible

<table>
<thead>
<tr>
<th>Year</th>
<th>WHO Indications</th>
<th>Amphotericin B Dose</th>
<th>Flucytosine Dose</th>
<th>Fluconazole Dose</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>WHO rapid advice guidelines</td>
<td>Amphotericin B (0·7–1·0 mg/kg per day) and flucytosine (100 mg/kg per day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Infectious Diseases Society of America guidelines</td>
<td>Amphotericin B (0·7–1·0 mg/kg per day) and flucytosine (100 mg/kg per day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>South African HIV Clinician Society guidelines</td>
<td>Intravenous amphotericin B (1·0 mg/kg per day) for 2 weeks (minimum 1 week)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All induction cryptococcal meningitis courses are for 2 weeks, unless stated. *Minimum package of prehydration, electrolyte replacement, and monitoring and management of toxic effects are available in these settings.

Table 1: Guidelines for the induction treatment of cryptococcal meningitis depending on accessibility to amphotericin B and flucytosine

The cost of amphotericin B continues to be a barrier to access. Prices range from US$3·51 to $12·20 per 50 mg vial (table 2), which is equivalent to the cost of a daily dose for cryptococcal meningitis treatment for a 50 kg adult, dosed at 1 mg/kg per day. Implementation of amphotericin B is connected with further attendant costs of hospitalisation, intravenous administration, and monitoring of toxic effects. Insufficient registration of amphotericin B is a challenge in some African countries (table 3).67

In 2005, Bristol-Myers Squibb was lobbied for a reduction in the price of amphotericin B in South Africa by the AIDS Law Project on behalf of the Treatment Action Campaign. The Southern African HIV Clinicians Society attained a price reduction from ZAR 146 to ZAR 26 ($18–$3) per 50 mg vial.65 This reduction made possible the expanded use of amphotericin B and a switch away from initial fluconazole monotherapy for cryptococcal meningitis treatment in South Africa. In a survey of 25 sentinel hospitals in South Africa, the use of amphotericin B for cryptococcal meningitis induction treatment increased substantially, from 34% in 2005 to 83% in 2010.67

Access to amphotericin B might be further restricted by uncoordinated funding, procurement, and distribution of the drug. In low-income and middle-income countries, amphotericin B is funded, procured, and distributed by different organisations, both governmental (President’s Emergency Plan for AIDS Relief, the Global Fund, UNITAID) and non-governmental (International Drug Purchase Facility, Doctors without Borders, and Clinton Health Access Initiative [CHAI]); therefore, coordination is not necessarily at country or regional levels. For example, a 2006 collaborative CHAI–UNITAID paediatric HIV/AIDS programme donated essential paediatric
medicines, including amphotericin B, to national HIV treatment programmes in more than 40 countries in Africa, Asia, and the Caribbean. Uptake of amphotericin B was low compared with other drugs, in part attributable to clinician unawareness of the need for, and inexperience in clinical use of amphotericin B in children (S Essajee, CHAI, personal communication).

Perceived unmanageable toxic effects as a result of insufficient local education and inadequate facilities for safe administration and monitoring are an important disincentive to clinician uptake of amphotericin B for adults with cryptococcal meningitis, even when use is recommended by guidelines. This situation causes a fall in demand, which might contribute to intermittent failures of supply chains (in both high-income and low-income countries).

At least three different lipid-based formulations are marketed (table 4). The most widely used liposomal intravenous formulation is AmBisome (Gilead Sciences, CA, USA), the patent of which has recently expired in several countries. Dosed at 3 mg/kg per day, it is substantially less nephrotoxic than amphotericin B, but is prohibitively expensive for low-income and middle-income countries (2011 British National Formulary list price per 50 mg vial: $150 in the UK; CIMS list price $225 in India). A substantial reduction in price to $18 per 50 mg vial was negotiated by WHO for their visceral leishmaniasis programme. An equivalent price was offered by Gilead Sciences to the South African Government for treatment of patients with cryptocoecal meningitis (N Geffen, Treatment Action Campaign, personal communication), but was not accepted. Gilead recently donated 445 000 vials of AmBisome for use over 5 years for the WHO visceral leishmaniasis programme.

Fungisome (Lifecare Innovations Ltd, India) a liposomal formulation of amphotericin B developed and trialled in India, has a maximum retail price of $122 per 50 mg vial for the local market (table 4). Therefore, cost remains an important barrier to a switch from conventional to less toxic liposomal formulations of amphotericin B in low-income and middle-income countries. Cheap in-house preparations of amphotericin B lipid emulsions, with rates of nephrotoxicity comparable to liposomal formulations, warrant further efficacy studies in low-income and middle-income countries.

So far, only intravenous formulations of amphotericin B have been licensed. New oral formulations of amphotericin B are in early stages of development as part of the drive to improve access to treatment for visceral leishmaniasis, and are being developed by a Canadian firm iCoTherapeutics. Under the terms of a socially responsible licensing agreement from the University of
British Columbia who devised the initial formulation, iCoTherapeutics are committed to ensuring access to these formulations for treatment of visceral leishmaniasis in some low-income and middle-income countries, while allowing the company to pursue more lucrative high-income markets for treatment of fungal infections.

Flucytosine was created in 1957 as a potential antitumour agent, and first used to treat human candidiasis and cryptococcosis in 1968. Flucytosine exerts its antifungal activity through rapid conversion into 5-fluorouracil, and is available in intravenous and oral formulations, marketed as Ancotil 2·5 g/250 ml solution for infusion and Ancobon (Meda Pharmaceuticals, France) 500 mg capsules. Flucytosine is always used in combination with other antifungals because resistance emerges rapidly to monotherapy. Side-effects are mediated by 5-fluorouracil, and include gastrointestinal and bone marrow toxic effects. Studies in low-income and middle-income countries have shown that oral flucytosine can be used safely and effectively without monitoring drug levels in settings in which complete blood count and renal function are monitored and dosing intervals are extended if renal impairment occurs. Flucytosine can be given nasogastrically in unconscious patients.

The use of flucytosine was originally restricted because of the drug’s toxic effects at high doses (150 mg/kg per day); however, since the 1980s, clinical trials of cryptococcal meningitis with progressively shorter courses of flucytosine at lower doses (100 mg/kg per day) have shown that flucytosine can be used safely and effectively in combination with amphotericin B (0·7–1 mg/kg per day). A trial in Vietnam showed an association between decreased mortality rates and treatment with flucytosine and amphotericin B compared with treatment with amphotericin B alone. Therefore, 2 weeks of amphotericin B plus flucytosine remains the gold standard for induction treatment of cryptococcal meningitis. In low-income and middle-income countries, where amphotericin B treatment is not available or feasible, flucytosine can be safely and effectively paired with high-dose fluconazole (1200 mg/day), as recommended by IDSA and WHO guidelines. Despite these guideline recommendations, flucytosine is not yet available in most of Asia and Africa (table 3). The main barriers to access to flucytosine include absence of drug registration and generic drug manufacturing in low-income and middle-income countries. Flucytosine is not registered in any African country.
Fluconazole is off patent, generally widely available and cheap, and numerous generic versions have FDA approval (table 4, price range with WHO Global Price Reporting Mechanism: $0.08–$1.36 per day when dosed at 800 mg\(^6\)). Although cost has greatly restricted access to fluconazole in the past,\(^7\) availability has gradually improved through increased production by generic manufacturers. Since 2000, Pfizer’s (NY, USA) Diflucan Partnership programme has provided free Diflucan to 63 low-income and middle-income countries for the treatment of patients with cryptococcal meningoitis and oesophageal candidiasis (not for the pre-emptive treatment of cryptococcal antigenaemia) and is set to continue indefinitely (Diflucan Partnership programme, Pfizer, personal communication). However, implementation of the programme varies: at teaching hospital pharmacies at investigators’ collaborating trial sites in South Africa (Cape Town, Pietermaritzburg, and Durban) and Uganda (Mbarara and Kampala), donated Diflucan is readily available, whereas in Malawi (Blantyre and Lilongwe), Zambia (Lusaka), Cameroon (Douala and Yaoundé), and Tanzania (Arusha), purchased generic fluconazole rather than donated Diflucan is in stock, attributable to the challenges of sustaining timely and streamlined ordering through the donation programme. Although free fluconazole has been crucial for the treatment of cryptococcal meningitis in Africa, increased availability of fluconazole by comparison with amphotericin B might have led to clinicians favouring fluconazole over amphotericin B-based induction treatment.\(^7\)^\(^{14}\)

Recommendations for improvement of access to antifungals

We propose ten measures to improve access to cryptococcal meningitis treatment (panel). Improved estimates of disease burden, building upon studies by the CDC,\(^7\) either via national cryptococcal surveillance systems (eg, South African National Institute for Communicable Diseases)\(^7\) or through localised epidemiological studies, would help with drug forecasting, streamline ordering, and maximise the use of donations. Such data would allow estimates of market size for manufacturers to be made and allow competitive price negotiation.

The 2011 WHO rapid advice guidelines\(^6\)^\(^{14}\) provide recommendations on antifungal regimens tailored to clinical settings (table 1), and offers guidance on how to minimise toxic effects and monitor amphotericin B\(^6\)^\(^{14}\) so that increased access does not produce more harm than good. These recommendations need to be translated into country-specific or region-specific treatment guidelines,\(^8\) and implemented alongside capacity building measures to improve facilities for rapid diagnosis, monitoring of toxic effects, and fast-track referral into antiretroviral therapy programmes.

In the WHO Model List of Essential Medicines, the core (the most efficacious, safe and cost-effective medicines for priority conditions for use in a basic health-care...
personal View

Pfizer in Bangladesh: a lengthy process that needs a full generic flucytosine at facilities contracted by GSK and South Africa is exploring the manufacture of cheaper the low-income and middle-income country markets. Support to produce generic versions of flucytosine for manufacturers should be given incentives and manufacturing generics is needed. Generic pharmaceutical manufacturers in low-income and middle-income countries. Increased competition through generation of generics should be preferential pricing for low-income and middle-income countries by pharmaceutical companies. Ensure socially responsible licensing of intellectual property for new antifungals or formulations developed by research organisations. Optimise existing antifungal strategies in clinical trials in low-income and middle-income countries. Stimulate research and development of novel antifungals by designation of cryptococcal meningitis as a neglected disease.

Panel: Ten measures to improve access to antifungal drugs for the treatment of cryptococcal meningitis

- Improve estimates of cryptococcal meningitis disease burden
- Ensure wider dissemination of best clinical practice
- Include all cryptococcal meningitis drugs on WHO core Essential Medicines List
- Register antifungals in low-income and middle-income countries
- Pooled procurement of antifungals
- Increase competition through generation of generics
- Ensure preferential pricing for low-income and middle-income countries by pharmaceutical companies
- Ensure socially responsible licensing of intellectual property for new antifungals or formulations developed by research organisations
- Optimise existing antifungal strategies in clinical trials in low-income and middle-income countries
- Stimulate research and development of novel antifungals by designation of cryptococcal meningitis as a neglected disease.

The optimisation of antifungal regimens in mortality-endpoint trials in low-income and middle-income countries is a driver for policy change. A multicentre African phase 3 trial (ISRCTN 45035509) is comparing standard with short-course amphotericin B-based regimens and a purely oral combination (ie, fluconazole plus flucytosine). Additionally, socially responsible licensing of intellectual property should apply to new antifungals or formulations made through research funded by the public or by foundations. To our knowledge, only one new long-acting azole-like compound is in development in a joint project between Viamet pharmaceuticals and the NIH Therapeutics for Rare and Neglected Diseases programme. The scarcity of drug development for cryptococcal meningitis is in stark contrast to the range of new drugs emerging from product-development partnerships for the treatment of malaria and tuberculosis, diseases that are associated with a comparable mortality burden to cryptococcal meningitis in sub-Saharan Africa.

The research and advisory group Policy Cures lists three criteria essential to classify a disease as neglected: the disease must predominantly affect people in low-income countries; needs new, improved, or additional products; and suffers from market failure because of an insufficient commercial market, resulting in insufficient research and development by industry. Cryptococcal meningitis fulfils all of these criteria. Official classification of cryptococcal meningitis as a neglected disease would help attract funding for drug development.

Conclusions

Although continued global scale-up of antiretroviral therapy and initiation before the CD4 count falls below 350 cells per μL remains the most important long-term strategy to reduce the incidence of cryptococcal meningitis, the infection will remain a major cause of HIV-related morbidity and mortality, particularly in sub-Saharan Africa in the foreseeable future. Treatment for cryptococcal meningitis relies on three old, off-patent antifungal drugs, which each pose specific access challenges for low-income and middle-income countries: amphotericin B through cost, toxic effects, and insufficiently coordinated distribution; flucytosine through cost and insufficient registration; and fluconazole through challenges to maintenance of local stocks, be it through sustainability of...
donations or insufficient generic supplies. If patients with cryptococcal meningitis survive the acute disease and become established on antiretroviral therapy, long-term prognosis is excellent. It is unacceptable that up to one half of patients with cryptococcal meningitis in low-income and middle-income countries do not survive to 10 weeks, and do not benefit from expansion of antiretroviral therapy programmes, partly because even the basic range of antifungal drugs is not available to them.

Access to the most effective antifungal drugs for treatment of cryptococcal meningitis in developing countries needs to be urgently improved as part of the global response to the HIV pandemic. A concerted move away from the widely-practised flucytosine monotherapy, towards more effective combination induction treatment regimens including amphotericin B or flucytosine or both, is needed. A coordinated international effort should involve relevant public and private organisations and we must learn from models with proven success in the implementation of access to medicines for other important global infectious diseases. Facilitated by WHO, a meeting of key stakeholders took place in March 2013 and has given rise to a concerted advocacy effort to improve access to essential antifungals for cryptococcal meningitis.

Contributors
The concept and structure of the manuscript was devised by HT, AL, TB, TSH, AL, HT, MR, PE, NG, TB collated data, including drug costings. AL, HT, and TB wrote the first draft of the manuscript. All authors contributed to writing and editing the final manuscript.

Conflicts of interest
HT is funded by a European Union grant (FP7 Health 241839). TB is funded by a Wellcome Trust Intermediate Fellowship (WT 089966). The findings and conclusions of this personal view are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. The use of product names in this manuscript does not imply their endorsement by the US Department of Health and Human Services.

Acknowledgments
The following people kindly provided or collated information on local or international antifungal drug prices or both: Iman Wanis and Boniface Dongomo Nguimfack (WHO, Switzerland), Alan Sheppard (IMS Health, USA), and Laura Whitney (St George’s Hospital, London, UK). Chomba Chuma of Lighthouse Healthcare (Johannesburg, South Africa) is exploring registration and manufacture of generic flucytosine for South Africa, and provided relevant information on this process. Shafiq Essajee (CHAI, USA) provided unpublished information regarding the uptake of amphotericin B through the CHAI UNITAID donation. We thank Richard Mahoney of the International Vaccine Institute (Seoul, South Korea) for critical reading of the manuscript, and Nathan Geffen of the Treatment Action Campaign (Cape Town, South Africa) for information regarding price negotiations for liposomal amphotericin B. We thank David Boulware (University of Minnesota, USA) and Mark Jacobson (Selian Hospital, Arusha, Tanzania) for providing information regarding Diflucan availability in Arusha, Tanzania.

References

38 Groender N. Cryptococcosis in developing countries: where are we after a decade of population-based surveillance in South Africa. 8th international conference on climate change; Charleston, USA; May 1–5, 2011. 22.

40 Gilead Sciences and WHO establish new five-year initiative to support global access to antiretroviral therapy. 8th International Conference on Cryptococcus and Cryptococcosis; Charleston, USA; May 1–5, 2011. 183.

63 Schaers CF, Meintjes GA, Morroni C, Post FA, Maertens G. Outcome of AIDS-associated cryptococcal meningitis initially treated with 200mg/day or 400mg/day of flucytosone. BMC Infect Dis 2006; 6: 118.

