Prevention and control of cystic echinococcosis

Human cystic echinococcosis (hydatid disease) continues to be a substantial cause of morbidity and mortality in many parts of the world. Elimination is difficult to obtain and it is estimated that, using current control options, achieving such a goal will take around 20 years of sustained efforts. Since the introduction of current (and past) hydatid control campaigns, there have been clear technological improvements made in the diagnosis and treatment of human and animal cystic echinococcosis, the diagnosis of canine echinococcosis, and the genetic characterisation of strains and vaccination against *Echinococcus granulosus* in animals. Incorporation of these new measures could increase the efficiency of hydatid control programmes, potentially reducing the time required to achieve effective prevention of disease transmission to as little as 5–10 years.

Introduction

Cystic and alveolar echinococcosis (hydatid disease) are a cause of substantial morbidity and mortality in most of the world, including parts of Europe, North America, and South America (figure 1). Recent technological advances could facilitate the implementation of improved control programmes and reduce the time period required for elimination. In this Review, we summarise and update information presented and discussed at a workshop on the control of cystic hydatid disease held in May, 2005, in Lima, Peru, under the sponsorship of the Office of Rare Diseases, National Institutes of Health (Bethesda, MD, USA) and the Universidad Peruana Cayetano Heredia (Lima, Peru). Reflecting the presented material, this paper mainly focuses on *Echinococcus granulosus* infections, with some discussion of specific areas relating to *Echinococcus multilocularis* and alveolar hydatid disease.

The parasites

Hydatidosis is a chronic cyst-forming parasitic helminthic disease of human beings as well as domestic and wild ungulates. It is caused by infection with the larval (metacestode) stages of dog tapeworms belonging to the genus *Echinococcus* (family Taeniidae) and is also referred to as echinococcosis. Three broad morphological forms of echinococcosis are recognised clinically: cystic echinococcosis caused by *E granulosus*, alveolar echinococcosis caused by *E multilocularis*, and polycystic echinococcosis caused by *Echinococcus vogeli* or *Echinococcus oligarthrus* (figure 2).1–4 Human cystic echinococcosis is the most common presentation and probably accounts for more than 95% of the estimated 2–3 million global cases,5 6 with human alveolar echinococcosis causing around 0·3–0·5 million cases (all in the northern hemisphere);4 fewer than 150 cases of polycystic echinococcosis have been described, all in Central and South America.1,5,8–10 The global burden (disability-adjusted life years [DALYS]) for human cystic echinococcosis was recently estimated to be more than that for onchocerciasis and almost the same as that for African trypanosomiasis.7 Until 2005, only four *Echinococcus* species were recognised, but a fifth species, *Echinococcus shiquicus*, has now been described in small mammals from the Tibetan Plateau, although its zoonotic potential is unknown.11

Echinococcus spp diagnosis, detection, and pathology

Diagnosis of human echinococcosis remains highly dependent on imaging techniques (eg, computed tomography scan, magnetic resonance imaging, ultrasound, and radiography) to detect the space-occupying cysts or lesions caused by the developing, dying, or dead metacestode(s) of *Echinococcus* spp.1,3,12–15 (figure 2 and figure 3). The WHO expert group on echinococcosis has produced an international classification of ultrasound images of cystic echinococcosis which, in principle, should be used whenever ultrasound diagnosis is done (figure 3).16 Additionally, laboratory-based diagnosis can provide a useful confirmation of clinical infection and can also be applied to aid epidemiological surveys of cystic and alveolar echinococcosis in endemic regions. Such methods mainly depend on detection of specific serum antibodies.
Review

in suspected cases or in people enrolled in mass screening programmes.1,16,17 Serological techniques are never 100\% sensitive and specific, and some cystic echinococcosis patients might not produce a marked antibody response.17–19 Specificity problems for cystic echinococcosis serology may become important because inter-taeniid species cross-reactions with alveolar echinococcosis or cysticercosis patients are not infrequent.5,16,20–23

Current gold standard serology for human cystic echinococcosis is based on detection of IgG antibodies to hydatid cyst fluid-derived native or recombinant antigen B subunits, either in ELISA or in immunoblot formats.9,16,19,20,24–31 A novel 32 kDa calcium-binding \textit{E} \textit{granulosus} recombinant antigen, EpC1, has recently been cloned from a protoscolex cDNA library, which detected antibodies in 92.2\% (107 out of 116) of pre-surgical cystic echinococcosis cases compared with 84.5\% (98 of 116) cases detected by native antigen B. Furthermore, only 4.5\% (4 out of 89) of alveolar echinococcosis cases and 9.3\% (16 out of 172) of cysticercosis cases cross-reacted with EpC1, compared with more than 14\% with antigen B.32,33 The EpC1 antigen appears to be located in the germinal layer of the hydatid cyst as well as the early protoscolex.

Other studies on the hydatid cyst of \textit{E} \textit{granulosus} indicate that high levels of host IgG heavy chain occur in the germinal layer of non-fertile cysts and suggest that the host immune response might be a cause of destruction of protoscolex production by inducing apoptosis of the germinal membrane, possibly opening up an avenue for vaccination against established cysts.34–38

Mitochondrial DNA-based detection of \textit{Echinococcus} species has been shown to be an excellent tool for analysis of strain/genotypic variation in the genus, determining phylogenetic relationships, and informing taxonomic species questions.4,39 DNA amplification has also shown great potential for diagnosis of canine and vulpine echinococcoses by development of stool-based PCR (copro-PCR) tests for both species-specific and strain-specific pre-patent and patent detection of adult \textit{E} \textit{granulosus} infections.3,9,40–45

Human disease in cystic echinococcosis relates to the development and growth of fluid-filled cysts mainly in the liver and the lungs, although it can affect the abdominal cavity, heart, bone, muscle, nervous system, or other locations.15 Growth of cystic larvae is slow and well tolerated by the host, occasionally leading to large parasitic masses.14 A proportion of cases detected by surveys in field conditions has been reported to spontaneously regress.6 By contrast, alveolar echinococcosis does not have well-defined external limits and infiltrates the surrounding parenchyma.3,13 Polycystic echinococcosis has characteristics intermediate between cystic echinococcosis and alveolar echinococcosis.

Treatment for human hydatidosis is difficult because most cysts or cystic lesions develop in the liver, lungs, or other organs.17 Surgery still remains the main treatment, but medicosurgical approaches are becoming more widespread, along with percutaneous drainage for hepatic cystic echinococcosis. Albendazole, mebendazole, and praziquantel drugs have cure rates (from chemotherapy alone) of approximately 30\% and another 10–20\% of patients will demonstrate substantial regression of cyst size and symptom alleviation.1,4,5,6,23–44
Adverse reactions including neutropenia, liver toxicity, and hair loss—reversible on cessation of treatment—have been reported. Outlook for individual patients is rarely predictable and long-term imaging follow-up is required. In the absence of active mass screening (using abdominal ultrasound scans with serological confirmation), the average time from infection to diagnosis/treatment is around 5–10 years, often resulting in large debilitating cyst or lesion growth over a variable asymptomatic period. Alveolar echinococcosis is associated with progressive disease and poor response to therapy. There is only scarce non-controlled evidence of the usefulness of antiparasitic drugs in polycystic echinococcosis.

Epidemiology and control

Epidemiologically, human cystic echinococcosis occurs predominantly in poor pastoral communities that raise sheep and other livestock, and keep dogs for guarding and/or herding animals. *E granulosus* is mainly transmitted in a cycle between dog definitive hosts that harbour the small intestinal tapeworm, and livestock.
(especially sheep) after the latter ingest the microscopic eggs while grazing pastures that are contaminated with dog faeces. Dogs usually acquire infection from hydatid-carrying livestock as a result of their deliberate feeding of infested offal (liver and lungs) by owners who practise home-slaughter. Thus, human behaviour helps to perpetuate the domestic cycle of *E granulosus* (figure 4). Human beings become exposed to the eggs of the tapeworm after close contact with an infected dog or its contaminated environment. In endemic regions, human incidence rates can reach more than 50 per 100000 person-years and prevalences as high as 5–10% may occur, as in parts of Peru, Argentina, east Africa, central Asia, and China. Risk factors for human cystic echinococcosis include a pastoral occupation, a history of dog ownership, poor education, age, sex, and drinking water source.

Since the 1860s when the Icelandic government embarked on a health education programme to eradicate hydatidosis, effective approaches for control of cystic echinococcosis and the transmission of the causative organism, *E granulosus*, have been understood. By 2002 there had been seven successful hydatid control programmes, five on island states/nations including two (New Zealand and Tasmania) where the region/country declared themselves to have eliminated the parasite following more than 30 years of dog-targeted control. Supervised regular aracoline purge testing then quarantine, or anthelmintic dosing (using praziquantel) of dogs coupled with effective management/logistics of the control authority and education have been key factors in the reduction in human and ovine cystic echinococcosis rates in the successful programmes. However, at least five other national or regional control programmes (mostly continental rather than islands) had only a limited effect or were unsuccessful.

New approaches to control and prevention of hydatidosis, including an effective livestock vaccine, potential dog vaccines against the tapeworm stage of *E granulosus*, tailored educational programmes, development of better diagnostics for definitive hosts and human beings (including dog coproantigen detection), more effective antiparasitic treatments (ie, oxfendazole), and the use of mathematical models to simulate best possible cost-effective interventions, will be expected to shorten the time of the attack phase and improve surveillance in the consolidation phase of hydatid control programmes. Some of these measures have already been proven effective and initial data have been produced for dog vaccination. Research on mathematical models of cystic echinococcosis control indicate that vaccination of sheep would be an effective control strategy, provided that over 90% vaccine coverage of the sheep population was achieved. However, the most effective intervention that was revealed by the modelling was a combination of vaccinating sheep and dog anthelmintic treatment. If about 75% vaccine coverage of the sheep population is achieved, anthelmintic treatment of dogs could be reduced to 6-month intervals while still achieving a high level of control of disease transmission, thereby greatly reducing the cost of a control programme and probably also increasing compliance from dog owners. Important additional gains should be expected if the efficacy of the dog vaccine is confirmed and it is incorporated into control options.

Relevance of species and genotype of *E granulosus*

E granulosus comprises a number of genetic variants and, to date, analyses of mitochondrial DNA sequences have identified ten distinct genetic types (genotypes G1–10). This categorisation follows closely the pattern of strain variation emerging based on biological characteristics. The extensive variation in nominal *E granulosus* may influence life-cycle patterns, host specificity, development rate, antigenicity, transmission dynamics, sensitivity to chemotherapeutic agents, and pathology. It might therefore have implications for the design and development of vaccines, diagnostic reagents, and drugs affecting control, although no concrete evidence of this effect has yet been demonstrated.
Dog coproantigen detection

The diagnosis of *E granulosus* in dogs using coproantigen-detection ELISA method has a number of advantages over the use of arecoline purgation as a diagnostic test. Coproantigen-detection ELISA has easier sample collection, is faster to do, and requires less personnel, all of which make it suitable for surveillance of large dog populations. Unlike arecoline purgation (which requires taking dogs to purge sites and concentration of dogs in specific places), faecal samples for coproantigen testing can be collected in the field for some of the dogs, eliminating the need of transporting them to a specific location. Coproantigen may be detectable early in the course of infection as both for *E granulosus* and *E multilocularis*.

Vaccines against *E granulosus*

Control programmes against cystic echinococcosis have traditionally relied on anthelmintic dosing of dogs, improved slaughter hygiene and surveillance, and instigated health education relating to human–dog behaviour. Echinococcosis vaccines would ideally prevent oncosphere development to hydatid cysts in sheep, and thus stop the development of adult gravid tapeworms in dogs.

A defined recombinant vaccine for ovine cystic echinococcosis (called EG95) was developed in 1996 by the groups of Marshall Lightowers and David Heath in Australia and New Zealand. The native molecule is 24.5 kDa and cloned as a 16.5 cDNA fusion peptide of 155 aminoacids with a fibronectin-like motif under the control of seven closely related genes. Linear synthetic peptides spanning the full EG95 sequence were antigenic in sheep but were not protective, indicating that the three-dimensional conformational structure of the molecule is functionally essential. Field trials in Australia, New Zealand, Argentina, Italy, and China over the next 8–10 years demonstrated more than 95% protection for at least 12 months in sheep (with colorectal transfer of immunity) following two injections in QuilA (figure 5).

<table>
<thead>
<tr>
<th>Trial 1: New Zealand</th>
<th>Number of viable cysts in individual sheep</th>
<th>Mean number of cysts</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>85, 49, 39, 11, 0</td>
<td>36.8</td>
<td>100%</td>
</tr>
<tr>
<td>EG95-vaccinated</td>
<td>0, 0, 0, 0, 0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial 2: Australia</th>
<th>Number of viable cysts in individual sheep</th>
<th>Mean number of cysts</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>16, 9, 9, 2, 2, 1, 1, 0</td>
<td>47</td>
<td>96%</td>
</tr>
<tr>
<td>EG95-vaccinated</td>
<td>1, 1, 0, 0, 0, 0, 0, 0</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial 3: Argentina</th>
<th>Number of viable cysts in individual sheep</th>
<th>Mean number of cysts</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>64, 62, 51, 23, 11, 7, 4, 3, 2</td>
<td>23</td>
<td>99%</td>
</tr>
<tr>
<td>EG95-vaccinated</td>
<td>1, 0, 0, 0, 0, 0, 0, 0</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Detailed information on immunisation schemes and other methods can be found in references 97 and 98. Protection was calculated as the percentage reduction in the mean number of parasites found in vaccinated animals compared with the mean number found in controls.

Table: Efficacy of sheep immunisation with EG95 vaccine

Reasons for failure of *E granulosus* control programmes

Until now, only the five island-based hydatid control programmes (Iceland, New Zealand, Tasmania, Falkland Islands, and Cyprus) have been successful, mostly based on health education, control, or elimination of home slaughter of sheep. A decline in canine infection was followed by a drop in the prevalence of infection in sheep.
and young cattle and a decreasing annual incidence of human cases.114 By contrast, only two of the continental programmes in Latin America (Region XII in Chile, and Rio Negro in Argentina) have been successful, and several others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates others failed.112,113

Control of E multilocularis By contrast with the predominant domestic animal transmission cycles that sustain E granulosus worldwide, the closely related species E multilocularis is transmitted only in the northern hemisphere and mainly within wildlife cycles. A number of fox species are highly susceptible to infection with the adult tapeworm, and a wide range of rodents (especially microtine voles) and small mammals can act as intermediate hosts. Human infection with the larval stage, alveolar echinococcosis, is consequently a rarer zoonosis than cystic echinococcosis. However, the greater pathogenicity, treatment difficulty, and higher mortality risk of alveolar echinococcosis has led to consideration of its control by intervention trials/programmes in endemic areas of Alaska (St Lawrence Island), Europe (southern Germany and northern Switzerland), northern Japan (Hokkaido), and southwest China.116 In China, both human alveolar echinococcosis and cystic echinococcosis are coendemic in several western regions, and therefore combined control of both these Echinococcus species may be warranted.117,118

Control of the wildlife transmission cycles of E multilocularis would be very difficult in most regions, although targeting fox populations is an option (see below). In many alveolar echinococcosis endemic areas, however, it seems that the domestic dog probably has an important role in zoonotic risk.109-112 There are three main options for control of E multilocularis and reducing or eliminating alveolar echinococcosis as a public-health problem: (1) eliminate the fox population, (2) treat the fox population with anthelmintic baits, and/or (3) treat the rural dog population with anthelmintic (praziquantel).

The first option, to eliminate the fox population, is almost always too drastic a measure, but could be highly effective to control a known outbreak/emergence, or in an area with a small fixed population as was the case on Reuben Island, Japan.116 The second option, to apply praziquantel baits at regular intervals to treat fox

Panel: Research needs and recommendations

- Measure the real burden of cystic echinococcosis disease in South America similar to that recently characterised for some other regions
- Undertake a multicentre comparative standardised study of native, recombinant, and peptide antigens for diagnosis of human cystic echinococcosis
- Undertake longitudinal follow-up studies of human seropositivity in cystic echinococcosis endemic regions using defined recombinant antigens. What is the extent, variability, and reason for long-term serial antibody responses in ultrasound-negative people?
- Compare the efficacy, sensitivity, and specificity of new copro-PCR tests for canine echinococcosis, and establish strain-specific detection for E granulosus in dogs
- Research priorities for the EG95 vaccine for ovine echinococcosis include determining the three-dimensional conformational structure by computer modelling; optimising vaccine delivery with existing established vaccines—eg, sheep oral; and carrying out a demonstration programme for hydatid control using EG95 vaccine in sheep, praziquantel dosing of dogs, and health education in a South American region
- Investigate approaches for vaccination against established hydatid cysts both as a treatment option and for use in conjunction with oncosphere vaccines to reduce the time required to break the transmission cycle of the dog–sheep strain
- Research priorities for dog vaccines against E granulosus include characterising infection dynamics in natural dog populations; expressing adult excretory/secretory antigens in salmonella and vaccinia heterologous carriers; establishing optimum protocols for dog vaccination studies; prototype testing in different settings and endemic areas; developing improved delivery methods using appropriate and acceptable adjuvants; determining the longevity of protection; and determining whether there is an effect against E multilocularis
- Guidelines should be developed for consideration of definitions for control of cystic echinococcosis—ie, what levels of reduction in sheep, dog, and human infections constitute significant effects? Elimination of transmission of E granulosus in a controlled region should be defined

and young cattle and a decreasing annual incidence of human cases.114 By contrast, only two of the continental programmes in Latin America (Region XII in Chile, and Rio Negro in Argentina) have been successful, and several others failed.112,113 A programme in Uruguay had little effect on livestock or human cystic echinococcosis rates over the first 20 years of the campaign (1972–92).116 Problems with this programme included too much reliance on rural owners to dose their own dogs, use of a purgative rather than a cestocidal drug, lack of local municipality staff and insufficient funds from the dog tax, baseline data for sheep (and dogs) was not collected to provide feedback to measure progress, and political upheaval.115 Other hydatid control programmes have failed for different reasons: (1) the premature withdrawal of government funding (mid-Wales programme); (2) small and under-funded control authority (Turkana programme, Kenya), with virtually no educational, medical, or veterinary facilities, poor communication and road networks, and a dispersed population; (3) inadequate management of stray dogs (Sardinian programme); and (4) presence of political upheaval or security issues, or both (terrorism in Peru).116 Major social and political changes in the newly independent states of central Asia following the collapse of the former Soviet Union,117,118
ultimately decreased the zoonotic risk via owned dogs.126

populations in Alaska (53% to 1% over 10 years) and thus colleagues105 would provide cross-protection.

E granulosus hosts, and it is not known whether the prototype There is currently no vaccine for Disease Control, Sichuan, personal communication).

of Sichuan Province, China (Wang Qian, Sichuan Centers for Disease Control, Sichuan, personal communication). There is currently no vaccine for E multilocularis in canid hosts, and it is not known whether the prototype E granulosus dog vaccine described by Zhang and colleagues103 would provide cross-protection.

Shortcomings of control interventions and additional measures to improve efficacy

Dog treatment campaigns face the problem of coverage, incomplete sensitivity to identify positive dogs, and incomplete treatment effectiveness. Associated costs and the need for equipment (eg, ELISA reader) are major limitations with the coproantigen ELISA test in endemic areas. The application of the test in areas of low endemicity can be hampered by a predictive positive value that would be expected to be low and where potential cross-reactions with other Taenia spp may occur.127

Although substantial advances in evaluation of sheep vaccines have been made, some issues remain to be improved. Combined vaccines that also protect against other sheep pathogens would enhance coverage and feasibility of sheep immunisation campaigns. More data on the longevity of protection are still required. In terms of dog vaccination, the initial promising data are preliminary and need to be repeated in different settings and endemic areas. There is also a need to improve the method of delivery to use an appropriate and acceptable adjuvant. Oral baiting is a highly appropriate approach and oral vaccination would certainly be a practical way to introduce the vaccine into carnivores. On the same line, a combined rabies/echinococcosis/cystic echinococcosis coendemic counties of Sichuan Province, China (Wang Qian, Sichuan Centers for Disease Control, Sichuan, personal communication). There is currently no vaccine for E multilocularis in canid hosts, and it is not known whether the prototype E granulosus dog vaccine described by Zhang and colleagues103 would provide cross-protection.

The panel summarises the research needs and recommendations for effective prevention of echinococcosis transmission.

Conclusion

Hydatid disease remains endemic in many regions around the world. Advances in knowledge and development/design of new control tools for hydatid disease including new diagnostics and antiparasite vaccines for the definitive and intermediate hosts provide an excellent prospect for improved control programmes. Incorporation of these new measures has the potential to increase the efficiency of current control programmes and could reduce the time required to achieve effective prevention of disease transmission from the previously estimated 20 years or more to as little as 5–10 years.

Conflicts of interest

We declare that we have no conflicts of interest.

Acknowledgments

The workshop where these data was discussed and initially assembled was supported by the Office of Rare Diseases, National Institutes of Health (Bethesda, MD, USA) and the Universidad Peruana Cayetano Heredia (Lima, Peru). Other research on the subject by the authors is funded by grant numbers AI51976, TW05362, and TW01563 from the National Institutes of Health, USA (PSC, HHG, RHG, AEG), the Welcome Trust (DPM, MWI, AEG), and the Australian National Health and Medical Research Council (MI). The sponsors had no role in the design or writing of this manuscript.

References

Review
