Subscription Information for:



Vol. 46, No. 12

## Survival of *Acanthamoeba* Cysts after Desiccation for More than 20 Years<sup>⊽</sup>

Rama Sriram,<sup>1</sup> Megan Shoff,<sup>2</sup> Gregory Booton,<sup>2</sup> Paul Fuerst,<sup>2</sup> and Govinda S. Visvesvara<sup>1\*</sup>

Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia,<sup>1</sup> and Departments of Molecular Genetics and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio<sup>2</sup>

Received 1 October 2008/Accepted 6 October 2008

Acanthamoeba is a free-living ameba that is found throughout the world and that causes encephalitis, keratitis, and cutaneous infections in humans. It has two stages in its life cycle: a trophic stage and a resistant cyst stage. We describe here the ability of Acanthamoeba cysts to survive desiccation for more than 20 years.

Acanthamoeba, a free-living ameba, is an opportunistic pathogen of humans and other animals, including gorillas, monkeys, dogs, ovines, bovines, horses, and kangaroos, as well as birds, reptiles, amphibians, and fishes. In humans, Acanthamoeba causes a spectrum of diseases, including infections of the central nervous system, namely, granulomatous amebic encephalitis (GAE); infection of the skin; and Acanthamoeba keratitis (AK), an infection of the eye. GAE and cutaneous infections have often occurred in patients with human immunodeficiency virus infection and AIDS, as well as immunodeficient patients, including transplant recipients. Acanthamoeba keratitis, however, has occurred in immunocompetent persons wearing soft contact lenses and those with trauma to the eye. Acanthamoeba feeds on bacteria and occurs worldwide. It has been isolated from a number of habitats, including soil; freshwater ponds; pools; lakes; brackish water; seawater; heating, ventilating, and air-conditioning filters; and medical equipment, such as gastric wash tubing, dental irrigation units, contact lens paraphernalia, as well as vegetables, cell cultures, and even human and other animal tissues (13, 21, 26).

Acanthamoeba has two stages in its life cycle: a trophozoite stage and a cyst stage. Both the trophozoite and the cyst are uninucleate, although binucleate trophozoites are occasionally seen. The nucleus is characterized by a large densely staining nucleolus. The trophozoite feeds on bacteria and reproduces by binary fission. The cyst stage is a dormant and resistant stage. The cyst has double walls. The outer ectocyst is wrinkled and is proteinaceous, whereas the inner cyst wall, the endocyst, is either stellate, polygonal, round, or oval and contains cellulose (15, 16). According to a few previous studies the cyst stage of Acanthamoeba spp. is resistant to extreme physical and chemical conditions, including pH 2.0, freezing,  $\gamma$  irradiation (250 rads), and UV irradiation ( $800 \text{ mJ/cm}^2$ ) (2, 8); moist heat (60°C) with a contact time of 60 min (11); prolonged storage at room temperature for 24 months (4) or 24 years at 4°C in water (14); and heavy metals and polychlorinated biphenyls (PCBs) (18).

Over the past 30 years, we have established in culture 45

isolates obtained from diverse human specimens, including cerebrospinal fluid (CSF), brain, skin, and nasal and corneal tissues, as well as contact lens paraphernalia and water. The isolates were grown on nonnutrient agar plates coated with live Escherichia coli cells. After the amebae differentiated into cysts, the agar plates were tightly wrapped with Parafilm and stored at room temperature in laboratory cabinets (Table 1). The agar plates that were retrieved from storage were dry and parched, and either the entire agar layer or part of the agar layer had detached from the surface of the petri dish. The Parafilm wrappings were removed and 10 ml William Balamuth saline (24), a modified ameba saline, was added to each plate. The plates were allowed to rehydrate overnight, the agar surface was scraped with a cell scraper, and the scraped materials were transferred to 50-ml centrifuge tubes. The tubes were centrifuged at  $500 \times g$  for 10 min at 4°C. The supernatant was aspirated, the sediment was inoculated into fresh agar plates coated with a layer of live E. coli cells, and the plates were incubated at 30°C. The plates were observed daily with an inverted microscope equipped with differential interference contrast optics, and in some cases, amebae were visualized within 24 h. The presence of amebae in the plates could be easily identified on the basis of the characteristic track marks that the amebae left behind on the agar plates coated with bacteria (Fig. 1). If trophozoites were seen in the plates, the area was marked and a small piece of agar was cut out and transferred face down onto a fresh agar plate coated with bacteria, and the plates were sealed with Parafilm and incubated as described above. The amebae consumed the bacteria, colonized the fresh agar plates, and subsequently produced double-walled cysts (15, 16). Microscopic examination of the cysts revealed that they all belonged to Acanthamoeba group II (17). Of the 45 plates processed, 32 (71%) were positive for amebae. Of these 32 positive plates, 17 (53%) contained samples from keratitis patients, 6 (19%) contained samples from patients with GAE, 4 (13%) contained samples from patients with skin infections, 3 (9%) contained samples from patients with nasal sinus infections, and 1 each (3%) contained CSF and water samples. The geographic origin, the sources of isolation, and the genotypic information for the recovered isolates are given in Table 1. Three-day-old agar plates containing large numbers of trophozoites were scraped and washed by centrifugation; the sediment was inoculated into a 25-cm<sup>2</sup> Corning tissue culture flask containing 10 ml proteose pep-

<sup>\*</sup> Corresponding author. Mailing address: Division of Parasitic Diseases, Centers for Disease Control and Prevention, MS-F36, Chamblee Campus, 4470 Buford Highway NE, Atlanta, GA 30341-3724. Phone: (770) 488-4417. Fax: (770) 488-4253. E-mail: gsv1@cdc.gov.

<sup>&</sup>lt;sup>v</sup> Published ahead of print on 15 October 2008.

| Date recv'd<br>(mo/day/yr) | CDC no.    | Origin | Sex | Original source         | Strain no.           | Species           | Genotype,<br>GenBank<br>accession no. | Date<br>reproc'd<br>(mo/day/yr) | OSU<br>identifier |
|----------------------------|------------|--------|-----|-------------------------|----------------------|-------------------|---------------------------------------|---------------------------------|-------------------|
| 04/02/1984                 | 84023461   | MA     | F   | Corneal scraping        | CDC:V014             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 04/05/1984                 | 84037022   | MA     | F   | Corneal scraping        | CDC:V016             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 05/30/1985                 | 85033424   | LA     | Μ   | CL                      | CDC:V025             | Acanthamoeba sp.  | T4, AY702985                          | 11/08/2006                      | 03-010            |
| 06/06/1985                 | No number  | TX     | F   | CL                      | CDC:V026             | Acanthamoeba sp.  | T4, AY702986                          | 11/08/2006                      | 03-011            |
| 07/08/1985                 | 85037352   | CA     | F   | Brain tissue            | CDC:V028             | Acanthamoeba sp.  | T4, AY702987                          | 11/08/2006                      | 03-012            |
| 08/07/1985                 | 85041057   | MA     | Μ   | Corneal scraping        | CDC:V029             | Acanthamoeba sp.  | T4, U07402                            | 11/08/2006                      |                   |
| 04/10/1986                 | 86027199   | WI     | F   | CL solution             | CDC:V036             | A. castellanii    | T4, FJ196654                          | 11/08/2006                      | 07-027            |
| 04/23/1986                 | 86027491   | OK     | F   | corneal scraping        | CDC:V037             | A. culbertsoni    | No growth                             |                                 |                   |
| 07/17/1986                 | 86038248   | IL     | F   | Corneal button          | CDC:V042             | A. castellanii    | T4, U07403                            | 11/08/2006                      | 07-026            |
| 08/13/1986                 | 86038744   | CA     | Μ   | Corneal scraping        | CDC:V043             | A. polyphaga      | T4, AY702988                          | 11/08/2006                      | 03-013            |
| 02/07/1986                 | 86017860   | FL     | Μ   | Corneal biopsy specimen | CDC:V045             | A. culbertsoni    | T1, FJ196645                          | 11/08/2006                      | 07-025            |
| 09/17/1986                 | 86043531   | PA     | F   | Lens case               | CDC:V048             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 01/08/1987                 | 87014900   | MA     | Μ   | Corneal scraping        | CDC:V062             | A.polyphaga       | T4, AY702989                          | 03/22/2002                      | 03-014            |
| 04/14/1987                 | 87026622   | CA     | F   | Corneal scraping        | CDC:V077             | A.polyphaga       | T4, FJ196652                          | 08/05/2002                      | 07-024            |
| 04/27/1987                 | 87026823   | WI     | Μ   | Lens case               | CDC:V078             | A.castellanii     | T4, FJ196651                          | 08/09/2002                      | 07-023            |
| 04/24/1987                 | 87026834   | MS     | Μ   | CL solution             | CDC:V079             | A. polyphaga      | T4, FJ196650                          | 08/09/2002                      | 07-022            |
| 04/24/1987                 | 87026833   | MS     | F   | Corneal scraping        | CDC:V080             | A. polyphaga      | T4, FJ196655                          | 08/05/2002                      | 07-028            |
| 06/09/1987                 | 87032192   | IL     | Μ   | Corneal biopsy specimen | CDC:V084             | A. polyphaga      | No growth                             |                                 |                   |
| 09/08/1987                 | 87038557   | TX     | Μ   | Corneal biopsy specimen | CDC:V093             | A. polyphaga      | No growth                             |                                 |                   |
| 09/11/1987                 | 87038692   | India  | Μ   | Corneal biopsy specimen | CDC:V095             | A. castellanii    | No growth                             |                                 |                   |
| 03/23/1988                 | 88020754   | TX     |     | Tap water               | CDC:V118             | A. castellanii    | No growth                             |                                 |                   |
| 06/17/1988                 | 88031108   | India  | F   | Brain tissue            | CDC:V124             | A. polyphaga      | T4, FJ196656                          | 08/05/2002                      | 07-030            |
| 01/24/1989                 | 89013839   | CA     | NA  | Hot spring              | CDC:V155             | Acanthamoeba sp.  | T4, AY702991                          | 04/22/2002                      | 03-016            |
| 03/15/1989                 | 89017685   | India  | Μ   | Corneal scraping        | CDC:V160             | Acanthamoeba sp.  | T4, FJ196657                          | 08/09/2002                      | 07-031            |
| 11/24/1989                 | 90000616   | CO     | F   | Corneal scraping        | CDC:V185             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 11/02/1990                 | 91000597   | GA     | М   | Brain tissue            | CDC:V210             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 04/23/1991                 | 91020919   | PA     | Μ   | Skin tissue             | CDC:V221             | Acanthamoeba sp.  | T4, AY702993                          | 04/22/2002                      | 03-017            |
| 10/25/1991                 | 92001385   | Italy  | Μ   | Corneal biopsy specimen | CDC:V235             | Acanthamoeba sp.  | T4, AY702994                          | 03/04/2002                      | 03-018            |
| 12/16/1991                 | 92016015   | OR     | F   | Skin biopsy specimen    | CDC:V240             | Acanthamoeba sp.  | T4, AY702995                          | 03/29/2002                      | 03-019            |
| 01/14/1992                 | 92016053   | NZ     | F   | Corneal biopsy specimen | CDC:V241             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 02/19/1992                 | 92016854   | VA     | M   | Skin biopsy specimen    | CDC:V245             | Acanthamoeba sp.  | T4, AY702996                          | 05/22/2002                      | 03-020            |
| 12/30/1992                 | 93016008   | CA     | M   | Sinus swab              | CDC:V280             | A. castellanii    | T1, FJ196642                          | 02/28/2002                      | 07-008            |
| 02/12/1993                 | 93000045   | Chile  | NA  | CL in case              | CDC:V524             | A. polyphaga      | No growth                             | 02/20/2002                      | 0, 000            |
| 04/01/1993                 | 93016016   | GA     | F   | Corneal scraping        | CDC:V286             | Acanthamoeba sp.  | No growth                             |                                 |                   |
| 06/03/1993                 | 93019480   | Spain  | M   | Corneal scraping        | CDC:V285             | Acanthamoeba sp.  | T4, FJ196647                          | 02/27/2002                      | 07-009            |
| 08/17/1993                 | 93025166   | Canada | F   | Corneal scraping        | CDC:V291             | Acanthamoeba sp.  | T4, FJ196648                          | 05/22/2002                      | 07-010            |
| 06/07/1994                 | 94001218   | GA     | M   | Nasal tissue            | CDC:V313             | Acanthamoeba sp.  | T4, AY702997                          | 04/12/2002                      | 03-021            |
| 11/04/1994                 | 95000122   | OH     | M   | Brain tissue            | CDC:V329             | Acanthamoeba sp.  | T1, AY703000                          | 06/27/2002                      | 03-022            |
| 01/30/1995                 | 95000122   | GA     | M   | Brain tissue            | CDC:V323             | Acanthamoeba sp.  | T1, FJ196644                          | 06/27/2002                      | 07-012            |
| 01/09/1996                 | 96000312   | NE     | M   | Brain tissue            | CDC:V369             | Acanthamoeba sp.  | T10. AY703001                         | 03/29/2002                      | 03-023            |
| 01/09/1996                 | 96000312   | AZ     | M   | Sinus swabs             | CDC:V309             | Acanthamoeba sp.  | T4, FJ196649                          | 06/27/2002                      | 07-013            |
| 02/04/1997                 | 97001904   | MO     | M   | Corneal tissue          | CDC:V370<br>CDC:V391 | Acanthamoeba sp.  | T4, AY703005                          | 07/10/2002                      | 07-013            |
| 02/04/1997                 | 98003046   | Spain  | M   | Brain tissue            | CDC:V391<br>CDC:V411 | Acanthamoeba sp.  | T4, AY703007                          | 07/10/2002                      | 03-024            |
| 02/12/1999                 | 99010812   | CT     | M   | Skin biopsy             | CDC:V411<br>CDC:V425 | A. culbertsonii   | T4, AY703008                          | 04/12/2002                      | 03-020            |
| 01/25/2000                 | 2000020285 | India  | M   | CSF                     | CDC:V425<br>CDC:V501 | Acanthamoeba sp.  | T74, AY703010                         | 04/12/2002                      | 03-027            |
|                            | 2000020203 | mula   | 141 |                         | CDC. V 501           | 2 icummunoeou sp. | · /¬, / · / / 05010                   | 0 <i>3/2</i> 7/2002             | 05-029            |

TABLE 1. Geographic origin, source of isolation, and genotypic information for recovered isolates<sup>a</sup>

<sup>a</sup> recv'd, received; reproc'd, reprocessed; CL, contact lens; F, female; M, male; NA, not available.

tone, yeast extract, and glucose medium (20) with 5% fetal bovine serum and 100  $\mu$ g/ml gentamicin (PYG medium); and the plates were incubated as described above. After 4 h of incubation, the flask was gently swirled, the supernatant was decanted, and fresh PYG medium was added to the flasks. After 3 days, the flask was shaken and 1 ml of the medium containing the amebae was removed and inoculated into fresh flasks containing the axenic (PYG) medium. An aliquot from the flask was also removed and inoculated into brain heart infusion and sheep blood agar plates for sterility testing. The amebae were next grown in a bacterium-free PYG medium (20) and pelletted by centrifugation, and their DNAs were extracted by use of a DNeasy kit (Qiagen, Valencia, CA). The nuclear 18S ribosomal DNA (rDNA) *Acanthamoeba* genusspecific amplicon ASA.S1 was amplified by PCR with genus-

specific primers JDP1 (5'-GGCCCAGATCGTTTACCGTGA A-3') and JDP2 (5'-TCTCACAAGCTGCTAGGGAGTCA-3') (5, 19, 22). The amplicon was run on a 1% agarose gel and produced a product of the expected size of ~450 bp. Subsequently, the *Acanthamoeba*-specific PCR product was sequenced with a Terminator 3001 automated fluorescent DNA sequencer system (Applied Biosystems (Foster City, CA), as described previously (5). The nuclear 18S rDNA sequence obtained was compared to other sequences in the *Acanthamoeba* rDNA database and was determined as follows. Of the 32 isolates studied, 27 (84.375%) isolates, including those from keratitis patients, belonged to the most common genotype (genotype T4), 4 (12.5%) belonged to genotype T1, and 1 (3.125%) to genotype T10.

In this study we examined the survivability of Acanthamoeba

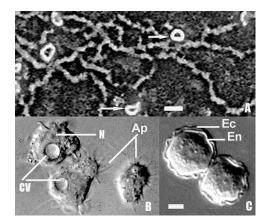



FIG. 1. (A) Acanthamoeba trophozoites (arrows) leaving track marks on the agar surface. Bar, 25  $\mu$ m. (B) Trophozoites exhibiting thorn-like acanthopodia (Ap), nucleus (N), and contractile vacuole (CV). (C) Double-walled cysts. Ec, ectocyst; En, endocyst. Bar for panels B and C, 5  $\mu$ m.

cysts stored in a state of desiccation for periods of 2 to 21 years. We found that the cysts of 70% of the isolates survived desiccation for 2 to 21 years. Furthermore, among the survivors, cysts of four (12.5%) isolates survived for 21 years even in a completely dry environment. All of the isolates tested here belonged to morphological group II, which is made up of many described species, including Acanthamoeba castellanii, A. polyphaga, A. rhysodes, A. divionensis, and A. hatchetti, that have commonly been identified from the environment and clinical specimens (13, 21, 26). Additionally, on the basis of sequence analysis, most of the isolates examined here belonged to the T4 clade. It has been well established that group II contains most of the pathogenic genotypes of the 15 recognized clades of Acanthamoeba and that the T4 clade contains most of the pathogens that cause AK throughout the world. It is also the most common and dominant genotype, with a universal distribution in the environment throughout the world (6). Booton et al. (6) also found that a majority of Acanthamoeba isolates from southern Florida beach sand belonged to the T4 clade. Previous studies have shown that although trophozoites of A. polyphaga, a member of the T4 clade, were inactivated after 1 to 2 h of solar photocatalytic (TiO<sub>2</sub>) disinfection, cysts of A. polyphaga did not show any significant inactivation (9, 12). The ability of amebae to survive in a southern Florida beach, which is constantly exposed to intense sunshine during the daytime, and also to survive in an environment with exposure to seawater may enable them to invade and colonize the corneal surface, where the composition of tears is roughly similar to that of dilute seawater (6). It is also noteworthy that T4 amebae have also been isolated from asymptomatic freshwater fish, from a necrotic lesion in an iguanid lizard, and from the liver of a South American toucan (13, 21, 25-27). These studies, based on sequencing of the small-subunit rRNA gene, have shown that several Acanthamoeba isolates from fish, reptiles, and a bird and those associated with human Acanthamoeba keratitis infections belong to the same T4 genotype, suggesting that features that enable these amebae to infect animals may also help them to infect humans (25).

Since the infection in humans becomes apparent only after several weeks or even months, the portal of entry is not clearly known, although it is believed that cysts carried by dust in air gain access to the nasal passages, since Acanthamoeba has been isolated from the nasal passages of humans. Previous studies conducted with Australian university students and Nigerian children during the Harmattan period, when strong winds carry dust and soil particles, showed that the rates of nasal carriage of Acanthamoeba were in the range of 2% in the former population (3) and 24% in the latter one (1). Sinusitis and other nasopharyngeal infections caused by Acanthamoeba have also occurred in immunodeficient patients, transplant recipients, and AIDS patients. Amebae may also enter the body through breaks in the skin, resulting in hematogenous dissemination to the lungs and brain (13, 21, 26). The current study highlights that Acanthamoeba cysts are able to persist for long periods under adverse conditions, which would facilitate travel over great distances via dust particles in the air.

It has been shown that amebae differentiate into doublewalled cysts when the food supply is exhausted and conditions become adverse, especially in the presence of contact lens cleaning and disinfecting solutions (23), and these cysts are resistant to the commonly used contact lens cleaning agents (7, 10). A recent outbreak of *Acanthamoeba* keratitis was associated with the use of AMO complete multipurpose solution (Advanced Medical Optics, INc.) in multiple U.S. states (7), including the Chicago, IL, area (10).

It is clear that acanthamoebae have the ability to tolerate a variety of physical and chemical conditions that occur in their environmental niches and have therefore developed resistance to often used antiseptics, herbicides, pesticides, PCBs, heavy metals, and contact lens disinfectant solutions. Additionally, *Acanthamoeba* cysts, as shown here, can withstand desiccation for more than 20 years. It is therefore necessary to continuously monitor isolates of *Acanthamoeba* for their resistance to environmental pollution, including heavy metals, PCBs, herbicides, pesticides, multipurpose contact lens solutions, and potent pharmaceuticals.

The work of Megan Shoff, Gregory C. Booton, and Paul Fuerst was supported by Public Health Service grant EY09073 awarded to P.F. by the National Eye Institute.

## REFERENCES

- Abraham, S. N., and R. V. Lawande. 1982. Incidence of free-living amoebae in the nasal passages of local population in Zaria, Nigeria. J. Trop. Med. Hyg. 85:217–222.
- Aksozek, A., K. McClellan, K. Howard, J. Y. Niederkorn, and H. Alizadeh. 2002. Resistance of *Acanthamoeba castellanii* cysts to physical, chemical and radiological conditions. J. Parasitol. 88:621–623.
- Badenoch, P. R., T. R. Grimmond, J. Cadwgan, S. E. Deayton, M. S. L. Essery, and B. D. Hill. 1988. Nasal carriage of free-living amoebae. Microbiol. Ecol. Health Dis. 1:209–211.
- Biddick, C. J., L. H. Rogers, and T. J. Brown. 1984. Viability of pathogenic and non pathogenic free-living amoebae in long-term storage at a range of temperatures. Appl. Environ. Microbiol. 48:859–860.
- Booton, G. C., G. S. Visvesvara, T. J. Byers, D. J. Kelly, and P. A. Fuerst. 2005. Identification and distribution of *Acanthamoeba* species genotypes associated with nonkeratitis infections. J. Clin. Microbiol. 43:1689–1693.
- Booton, G. C., A. Rogerson, T. D. Bonilla, D. V. Seal, D. L. Kelly, T. K. Beattie, A. Tomlinson, F. Lares-Villa, O. A. Fuerst, and T. J. Byers. 2004. Molecular and physiological evaluation of subtropical environmental isolates of *Acanthamoeba* spp., causal agent of *Acanthamoeba* keratitis. J. Eukaryot. Microbiol. 51:192–200.
- Centers for Disease Control and Prevention. 2007. Acanthamoeba keratitis multiple states, 2005–2007. MMWR Morb. Mortal. Wkly. Rep. 56:532–534.

- Chatterjee, S. 1968. X-ray induced changes in the cell body of amoeba. Z. Biol. 116:68–80.
- Heaselgrave, W., N. Patel, S. Kilvington, S. C. Kehoe, and K. G. McGuigan. 2006. Solar disinfection of poliovirus and *Acanthamoeba polyphaga* cysts in water—a laboratory study using simulated light. Lett. Appl. Microbiol. 43: 125–130.
- Joslin, C. E., E. Y. Tu, M. E. Shoff, G. C. Booton, P. A. Fuerst, T. T. McMahon, R. J. Anderson, M. S. Dworkin, J. Sugar, F. C. Davis, and L. T. Stayner. 2007. The association of contact lens solutions use and *Acanthamoeba keratitis* Am. J. Ophthalmol. 144:169–180.
- Kilvington, S. 1989. Moist-heat disinfection of pathogenic Acanthamoeba cysts. Lett. Appl. Microbiol. 9:187–189.
- Lonnen, J., S. Kilvington, S. C. Kehoe, F. Al-Touati, and K. G. McGuigan. 2005. Solar and photo catalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res. 3:877–883.
- Marciano-Cabral, F., and G. Cabral. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16:273–307.
- Mazur, T., E. Hadas, and I. Iwanicka. 1995. The duration of the cyst stage and the viability and virulence of *Acanthamoeba* isolates. Trop. Med. Parasitol. 46:106–108.
- Page, F. C. 1967. Re-definition of the genus Acanthamoeba with description of three species. J. Protozool. 14:709–724.
- Page, F. C. 1988. A new key to freshwater and soil Gymnamoebae. Freshwater Biological Association, Ambleside, Cumbria, United Kingdom.
- Pussard, M., and R. Pons. 1977. Morphologie de la paroi kystique et taxonomie du genre *Acanthamoeba* (Protozoa, Amoebida). Protistologica 13: 557–598.
- Sawyer, T. K., E. L. Lewis, M. Galassa, D. W. Lear, M. L. O'Malley, W. N. Adams, and J. Gaines. 1982. Pathogenic amoebae in ocean sediments near wastewater sludge disposal sites. J. Water Pollut. Control Fed. 54:1318–1323.
- 19. Schroeder, J. M., G. C. Booton, J. Hay, I. A. Niszl, D. V. Seal, M. B. Markus,

**P. A. Fuerst, and T. J. Byers.** 2001. Use of subgenic 18S ribosomal DNA PCR and sequencing for genes and genotype identification of acanthamoebae from human with keratitis and sewage sludge. J. Clin. Microbiol. **39:**1903–1911.

- Schuster, F. L. 2002. Cultivation of pathogenic and opportunistic free-living amebas. Clin. Microbiol. Rev. 15:342–354.
- Schuster, F. L., and G. S. Visvesvara. 2004. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 34:1001–1027.
- 22. Stothard, D. R., J. M. Schroeder-Diedrich, M. H. Awwad, R. J. Gast, D. R. Ledee, S. Rodriguez-Zaragoza, C. L. Dean, P. A. Fuerst, and T. J. Byers. The evolutionary history of the genus *Acanthamoeba* and the identification of eight new 18S rRNA gene sequence types. J. Eukaryot. Microbiol. 45:45–54.
- Turner, N. A., J. Harris, A. D. Russell, and D. Lloyd. 2000. Microbial differentiation and changes in susceptibility to antimicrobial agents. J. Appl. Microbiol. 89:751–759.
- Visvesvara, G. S., and W. Balamuth. 1975. Comparative studies on related free-living and pathogenic amoebae, with special reference to *Acanthamoeba*. J. Protozool. 22:245–256.
- 25. Visvesvara, G. S., C. G. Booton, D. J. Kelley, P. Fuerst, R. Sriram, A. Finkelstein, and M. M. Garner. 2007. In vitro culture, serologic and molecular analysis of *Acanthamoeba* isolated from the liver of a keel-billed toucan (*Ramphastos sulfuratus*). Vet. Parasitol. 143:74–78.
- Visvesvara, G. S., H. Moura, and F. L. Schuster. 2007. Pathogenic and opportunistic free-living amoebae: *Acanthamoeba* spp., *Balamuthia mandrillaris*, *Naegleria fowleri*, and *Sappinia diploidea*. FEMS. Immunomicrobiol. 50:1–26.
- Walochnik, J., A. Hassl, K. Simon, G. Benyr, and H. Aspock. 1999. Isolation and identification by partial sequencing of the 18S ribosomal gene of freeliving amoebae from necrotic tissue of *Basiliscus plumifrons* (Sauria: Iguanidae). Parasitol. Res. 85:601–603.